Imaging algorithms and computing

S. Bhatnagar NRAO

Challenges

- 2:1 Bandwidth ratio
 - Primary beam effects
 - Time and frequency dependent
 - Polarization response
 - Spectral index variations across the sky
 - Deconvolution errors, Pixelation errors
- Direction dependent (DD) effects
 - Pointing errors
 - Long, non co-planar baselines (w-term)
 - Ionospheric phase screen
- Computing and I/O loads

Challenges

Strong RFI

- Some algorithms/schemes exist
- Weak RFI
 - Very difficult to detect and remove
 - Will/does affect high dynamic range imaging
- Near field problems
 - Remains correlated
 - Not the same at all baselines
 - Variable in time & frequency
- Self Interference

The Measurement Equation

Generic Measurement Equation: [HBS papers]

- Corruptions: $M_{ij} = J_i \otimes J_j^*$: direction independent corruptions $M_{ij}^s = J_i^s \otimes J_j^{s*}$: direction dependent corruptions
- Sky: Frequency dependent sky: $I(s, v) = I(s, v_o)(\frac{v}{v_o})$
- W-term: $e^{\iota s.b_{ij}} = e^{\iota[ul + vm + w(\sqrt{1 l^2 m^2} 1)]}$: Not a FT kernel (a.k.a. non co-planar array)

Pieces of the puzzle

• Unknowns:

- M_{ij},M^s: Electronics, Primary Beams, Antenna pointing, ionosphere,...
- I^M : Extended emission, spectral index variations, polarization,...

Need Efficient Algorithms:

- Correct for image plane effects
- Decompose the sky in a more appropriate basis
 - Frequency sensitive (combine with MFS)
- Solvers for the "unknown" direction dependent effects (pointing, PB shape, ionospheric effects,...)
 - As expensive as imaging!

Needs (Computing):

- Parallel computing & I/O
- Scalable algorithms & software

W-projection algorithm: Scaling laws

UV-facet: $N_{facets}^2 N_{GCF}^2 N_{vis}$

(Cornwell, Kolap & Bhatnagar, Special Issue IEEE)

Primary Beam Effects (Available in CASA)

• EVLA full beam, full band, single feed

PB variation across the band

EVLA: Sources move from main-lobe to side-lobes

PB rotation, pointing errors

Cross hand power pattern

PB gain varies as a function time, frequency and direction in the sky

Dominant errors in mosaicing: PB effects

Dominant sources of error: Single Pointing

Requirements: "...full beam, full Stokes, wide-band imaging at full sensitivity".

- EVLA full beam
 - Estimated Stokes-I imaging Dynamic Range limit: ~10⁴

Stokes-V Relative J2000 Declination (arcmin) 30 -20 Relative J2000 Right Ascension (arcmin)

RMS ~15µJy/beam

Dominant sources of error: Single Pointing

Requirements: "...full beam, full Stokes, wide-band imaging at full sensitivity".

- EVLA full beam
 - Estimated Stokes-I imaging Dynamic Range limit: ~10⁴

RMS ~1µJy/beam

Direction Dependent Corrections

During vs. Post deconvolution PB correction

- PB errors can easily limit imaging DR
- Errors are non-random
- Stable PB will be helpful
 - Dipole arrays vs. rigid structure

Post-deconvolution PB correction

PB correction during deconvolution

Pointing SelfCal: Example (Available in CASA)

Model image: 59 sources from NVSS. Flux range ~2-200 mJy/beam

Red: Typical antenna pointing offsets for VLA as a function of time

Blue: Solved antenna pointing errors

Sky: More complex than point sources

Sky Frequency dependence

- Direction & Frequency Dependent errors
 - Sky spectral index? PB effects? Pointing? Pixelation errors?
- Errors not coherent across frequency
 - Will affect spectral line signals (EoR)

Extended Emission (Algorithm in CASA)

(Bhatnagar et al, A&A, June 2008)

No PB correction

PB correction

- Stokes-V imaging of extended emission
 - Algorithms designed for point sources will not work
 - Need more sophisticated modeling of the extended emission

Sp. Index Image (Carilli et al.)

Antenna: Dipole arrays vs. Solid Steel

Simulation of LWA station beam @50MHz (Masaya Kuniyoshi, UNM/AOC)

EVLA antenna PB rotation with Parallactic Angle

Simulations using the CASA software

Confusion limit vs. resolution

- $\sigma_{\text{confusion}} \propto (v^{-2.7}/B^2_{\text{max}})$
- B_{max} ~100 Km at 200MHz for $\sigma_{confusion}$ ~ 1µJy/beam
- Challenges:
 - W-term an issue for $B_{max} > 2-3Km \& DR > 10^4$

PB errors: Full beam imaging limits

- Limits due to rotation of asymmetric PB
 - In-beam max. error @~10% point
 - DR of few x10⁴:1
 - Errors larger in the first sidelobe
- Limits due to antenna pointing errors
 - In-beam max. error at half-power points
 - DR of few x10³⁻⁴:1
 - Limits for mosaicking would be worse
 - Significant flux at half-power and side-lobes for many pointing

Computing & I/O costs

• DataSize=
$$\frac{N_a*(N_a-1)}{2} \frac{T}{\delta T} \left[N_{ch} N_p \left[2*SoF + \frac{SoWt}{N_p} \right] + 4 SoF \right]$$

- For EVLA: 0.5-1.0 TB + 0.5GB

• FlOp per gridding =
$$\frac{N_a * (N_a - 1)}{2} \frac{T}{\delta T} \left[N_{ch} N_p N_{IP} \right] \left[N_{op} S^2 \right]$$

- One gridding (Major Cycle) will take 1.5-2hrs.
 - Computing efficiency: 10-20% of the rated GFLOPs
- @100 MB/s, single read of 1 TB data will take ~3hrs.
- Total full data accesses: 10-20

Computing & I/O costs

- Computing scales linearly with N_{ch} , N_p and S²
 - Convolution support size larger for DD correction (e.g. PB)
- DD calibration
 - Required for what has been promised!
 - N_{iter} N_{par} x [Gridding operations + 2 x full data reads]
- PB-correction+Multi-frequency Synthesis:

$$I(v) = I(v_o) \left(\frac{v}{v_o}\right)^{\alpha}$$
 where DR

- Taylor expantion: N_{terms} depends on the required DR
- N_{iter} N_{terms} x 2 Gridding Operations + full data read

Computing & I/O costs

- Higher sensitivity ==> more data + correction of more error terms
 - Needs more sophisticated parameterization
 - Significant increase in computing and I/O loads
- Imaging:
 - Correction for PB variations, Pointing errors, ionosphere
 - Better modeling of extended emission
- Calibration: solve for direction dependent effects
 - As expensive as imaging
 - PB shape, pointing, ionosphere
- Processing cost dominated by forward and backward transforms (gridding)
 - I/O time comparable to computing time

Computing & Algorithms

- Hard to get away from FFT based forward and inverse transforms
 - Only "peeling" approach not feasible
 - Requires 10K-100K components DFT for a 1 TB data base!
- Better understanding of error propagation can lead to efficient algorithms
 - All algorithms (Calibration & Image Deconvolution) are function minimization algorithms (Steepest Descent in fact!)
 - But need to invest and believe in R&D!
- Compute for the allowed dynamic range
 - Computation more accurate than the allowed DR is a waste of resources