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Challenges

e 2:1 Bandwidth ratio

- Primary beam effects

* Time and frequency dependent
* Polarization response
- Spectral index variations across the sky

— Deconvolution errors, Pixelation errors

* Direction dependent (DD) effects

- Pointing errors
- Long, non co-planar baselines (w-term)

e Computing and 1/O loads
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Challenges

- Some algorithms/schemes exist

- Very difficult to detect and remove
- Will/does affect high dynamic range imaging

- Remains correlated

— Not the same at all baselines

- Variable in time & frequency
Self Interference
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The Measurement Equation

* Generic Measurement Equation: [HBS papers]

Data Corruptions Sky W-term

e Corruptions: M=J]® J;f -directionfindependent corruptions

ij= J.® J;* .direction dependent corruptions

X

v
» sky: Frequency dependent sky:  I(s,v)=I(s ,Vo)(v—)

o

o W-term: o't _ dultvmwi1-r-m’-1)] : Not a FT kernel

(a.k.a. non co-planar array)
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Pieces of the puzzle

e Unknowns:

. I\/IU,,MSU: Electronics, Primary Beams, Antenna pointing, ionosphere,...
» M : Extended emission, spectral index variations, polarization,...

* Need Efficient Algorithms:
* Correct for image plane effects

* Decompose the sky in a more appropriate basis

® Frequency sensitive (combine with MFS)

® Solvers for the “unknown” direction dependent effects (pointing, PB
shape, ionospheric effects,...)

® As expensive as imaging!
* Needs (Computing):

* Parallel computing & I/O
* Scalable algorithms & software
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W-projection algorithm: Scaling laws

Lhf g s

OEAG

W-projection: (N> + N> )N

UV-facet: Nfacets NGCF Nvis

(Cornwell, Kolap & Bhatnagar, Special Issue IEEE)
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Primary Beam Effects (Available in CASA) |5
* EVLA full beam, full band, single feed

PB variation across the band

EVLA: Sources move from main-lobe to side-lobes

PB rotation, pointing errors
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Dominant errors in mosaicing: PB effects .
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Dominant sources of error: Single Pointing

equirements. ...1u eam, 1u OKesS, wide-pban |mag|ng al Tull sensitivi y.
* EVLA full beam

- Estimated Stokes-I imaging Dynamic Range limit: ~10*
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Dominant sources of error: Single Pointing
Requirements, ~...Tull beam, Tull SToKes, wide-band imaging at Tull Sensivity .

e EVLA full beam

- Estimated Stokes-I imaging Dynamic Range limit: ~10*
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* PB errors can easily limit
imaging DR

* Errors are non-random

* Stable PB will be helpful

— Dipole arrays vs. rigid structure
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Pointing SelfCal: Example (Available in CASA)

J2000 Ceclination

o4 B

Model image: 59
sources from NVSS.
Flux range ~2-200
mJy/beam

50°00" ‘

W
N <0 +

35

I = | | |
pohio™ D™ o8™ o7 os™ g5 04
J2000 Right Ascension

Red: Typical antenna
pointing offsets for VLA
as a function of time

| LI Hin 1 ] A
I l il |l il v I “ |
,'m'L[ r"‘i‘l i Hrl,']”*ﬂl“ -;‘t'*‘ﬂ-f ; ;l h".twl.'f J"H'lulrd Blue: Solved antenna

]

pointing errors

S. Bhatnagar (NRAO): URSI GA, Chicago, Aug. 10, 2008 13



Sky: More complex than point sources
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Sky Frequency dependence

1365GHz © I(1.365GHz)-I(1.435GHz)

* Direction & Frequency Dependent errors
- Sky spectral index? PB effects? Pointing? Pixelation errors?
 Errors not coherent across frequency

- Will affect spectral line signals (EoR)
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(Bhatnagar et al, A&A,
June 2008)
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No PB correction

PB correction

o Stokes-V imaging of extended
emission

- Algorithms designed for point
sources will not work

- Need more sophisticated modeling
of the extended emission Sp. Index Image (Carilli et al.)
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.

Simulation of LWA station beam
@R\ 15V
(Masaya Kuniyoshi, UNM/AQOC)
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Simulations using the CASA software
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Confusion limit vs. resolution
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* Challenges: CRRAL
J o A, .,‘?..‘_,’ ""
- W-term an issue for B__ > 2-3Km & DR > 104 oo o m

- lonospheric calibration: Even field based calibration fails for B > 1414
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PB errors: Full beam imaging limits

* Limits due to rotation of asymmetric PB

— In-beam max. error @~10% point
— DR of few x10*:1

— Errors larger in the first sidelobe

* Limits due to antenna pointing errors
— In-beam max. error at half-power points
— DR of few x10°*:1

— Limits for mosaicking would be worse

« Significant flux at half-power and side-lobes for many pointing
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Computing & I/O costs

N (N —1) |
a a T Nh N [2*S0F-|—S0Wt
2 5T | 7 N,

o DataSize= |+4 SoF

- For EVLA: 05-1.0TB + 0.5GB

Na*(Na—l) T
o FIOp per gridding= [N
2 oT

c

h Np NIP

N §°
op

- One gridding (Major Cycle) will take 1.5-2hrs.

* Computing efficiency: 10-20% of the rated GFLOPs
- @100 MB/s, single read of 1 TB data will take ~3hrs.

e Total full data accesses: 10-20

S. Bhatnagar (NRAQO): URSI GA, Chicago, Aug. 10, 2008

20




Computing & I/O costs

« Computing scales linearly with N_, Npand S°

— Convolution support size larger for DD correction (e.g. PB)

e DD calibration

- Required for what has been promised!

- N Npar X [Gridding operations + 2 x full data reads]

(04

\%

* PB-correction+Multi-frequency Synthesis: [(v)=I(v )

o

o

- Taylor expantion: N___depends on the required DR

- N._N__ x2 Gridding Operations + full data read

iter ter
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Computing & I/O costs !gg

* Higher sensitivity ==> more data + correction of more error terms
— Needs more sophisticated parameterization
— Significant increase in computing and I/O loads
* Imaging:
— Correction for PB variations, Pointing errors, ionosphere
— Better modeling of extended emission
* Calibration: solve for direction dependent effects
— As expensive as imaging

- PB shape, pointing, ionosphere

* Processing cost dominated by forward and backward transforms
(gridding)
- /O time comparable to computing time
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Computing & Algorithms

* Hard to get away from FFT based forward and inverse transforms

- Only “peeling” approach not feasible
* Requires 10K-100K components DFT for a 1 TB data base!

* Better understanding of error propagation can lead to efficient
algorithms

- All algorithms (Calibration & Image Deconvolution) are function
minimization algorithms (Steepest Descent in fact!)

- But need to invest and believe in R&D!

* Compute for the allowed dynamic range

- Computation more accurate than the allowed DR is a waste of
resources
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