## RAPID

# A Portable and Reconfigurable Imaging Interferometer Array

Colin Lonsdale, Frank Lind

and a team of ~10

MIT Haystack Observatory

**Cambridge University Team** 

JPL Team

Led by Andy Faulkner

Led by Chris Mattman



- Low frequency radio array, 48-615 MHz
- ●~50-75 solar-powered, portable antennas
- No copper <u>or</u> fiber connections
- Local storage of voltage samples at each antenna
- Imaging interferometry performed offline
- Low-cost setup and breakdown
- Highly portable and reconfigurable





### RAPID capabilities

A whole new level of flexibility ...

- Ship array to best site for the science goals
  - Zero site infrastructure required
- Set up complete array in a day or two
  - Goal 20 person minutes per element
- Reconfigure the array in a few hours
- Collect data as needed
  - over hours, days or weeks
  - in multiple configurations if required
- Pack up in a day or two and ship out
- Process offline with complete flexibility

# The RAPID System

#### **RAPID Field Unit**







# SKALA-R







### Modular LNA

- Precision calib. version
- Low noise version (SKA)



# Energy Unit



- Can use Li Ion or NiMH
- Choice depends on







# DAQ Unit



# Mobile support infrastructure

- Array layout measurement
- Intra-array communication
- Quick look data capture, functional checks, event response, ...
- Environmental data
- Backup phasing beacon

Reference and Survey Unit Discone Antennas Beacon Radios x2 WIFE WiFI Sector 2x4Antennas L1/L2/L5 GPS Weather Antenna + Insolation Sensor UHF L1/L2/L5 RTK RTK GPS Antenna Array Level Computing CPU + SSD

# Offline Data Processing



- OODT to simplify M&C, metadata handling
- Modular, highly scalable processing
  - Correlation, and various other signal processing tasks
  - Developed with evolving processor architectures in mind

### Interferometry Demonstration



### Current Status

- Sustained 8 Gbit/sec, antenna to SSD
  - Peak power draw ~30W, production unit ~20W
  - Meets or significantly exceeds all requirements
  - Primary project risk retired
- Several major components complete
  - SKALA-R antenna system
  - Energy unit
  - All essential software and firmware
- DAQ unit integration in progress
  - Production prototype early 2016
- Production run, commissioning in 2016

# Galactic synchrotron imaging

Single dish narrowband total power data ~1 degree resolution Significant artifacts at low levels 30 years old, still the gold standard

**RAPID** goals: Higher resolution, higher fidelity **Broadband coverage from 48-615 MHz** Scalable, custom configuration is key



### Advanced Radio Apertures













[McKay-Bukowski, et al., 2014]

The Astronomy Community has invested heavily in Low Frequency Radio Array **Technology Development** 

Enabled by software radio

Just Add a Transmitter...



### Rich Geospace Science

"Photosphere to Mud"



### RAPID configuration for solar imaging

F+1 28 MHz

#### Need:

- **Excellent monochromatic** instantaneous coverage
- No very short baselines
- High angular resolution





plane sampling, high DR imaging at optimum resolution

extraordinary uv

### RAPID deployments for Radar

- Jicamarca, Peru
  - 49 MHz high power transmitter
  - Rich equatorial ionospheric phenomenology
- Poker Flat, Alaska
  - AMISR illuminator
  - Rich auroral phenomenology
  - Simultaneous Mahali GPS campaign
  - Data fusion

### RAPID deployment for UHECR

- Ship to location of particle detector array
  - Use particle detectors to trigger radio capture
  - Avoid false positive problem (RFI)
  - Cyclic memory buffer, relaxed response time to events
- Tailor configuration to goals, e.g.
  - For energetic, rare events, cover large area
  - For detailed study of weaker, frequent events, sample the "footprint" densely
  - and anything in between

# "Future" Aspects

- Direct RF digitization, no analog mixing
  - Increasingly prevalent in radio astronomy
  - ADC technology advancing rapidly
- Voltage recording, offline processing
  - Minimal compromises at observe time
  - Anticipates affordability of massive memory
  - Minimizes custom engineering for real time data handling
  - Development of a software processing ecosystem
  - Delayed information destruction process as/how needed
- Autonomous units, reduced infrastructure dependence
  - Very low power systems; cheap accurate frequency standards
  - Greater freedom in placement, configuration

# "Deep memory" is coming

Store and keep all voltages

### 3D XPoint™ Technology: An Innovative, High-Density Design

Basic physical mechanism

scalable to 4 nm feature sizes

#### **Cross Point Structure**

Perpendicular wires connect submicroscopic columns. An individual memory cell can be addressed by selecting its top and bottom wire.

#### Non-Volatile

3D XPoint™ Technology is non-volatile—which means your data doesn't go away when your power goes away—making it a great choice for storage.

#### **High Endurance**

Unlike other storage memory technologies, 3D XPoint™ Technology is not significantly impacted by the number of write cycles it can endure, making it more durable.

#### Stackable

These thin layers of memory can be stacked to further boost density.

#### Selector

Whereas DRAM requires a transistor at each memory cell—making it big and expensive—the amount of voltage sent to each 3D XPoint™ Technology selector enables its memory cell to be written to or read without requiring a transistor.

#### Memory Cell

Each memory cell can store a single bit of data.

# Handling Data Volumes

- Modular, scalable software infrastructure
  - Exploit new machine architectures quickly/efficiently
  - Minimize lag relative to Moore's law industry progress
- Data ⇒ Information ⇒ Patterns ⇒
  Understanding
  - Distillation process, ending in scientific understanding
  - Early stages are quickly growing beyond human cognitive capacity
  - Machine role in discovery process must migrate to the right ...

#### RAPID is a testbed

- Up to ~0.5 Tbit/sec, petabyte-level acquisition per campaign
- Strong signal targets, high information per bit

# Summary

### • RAPID version 1 is nearing completion

- Uniquely flexible in location and configuration
- Highly modular for different applications
- Designed with diverse future variants in mind

### • Emphasis on anticipating technological trends

- Seek architecture that spans technology cycles
- Exploit new, better devices with minimum development
- Software whenever possible, not hardware or firmware

### Future plans

- Scientific use of the array collaborations enthusiastically welcomed
- Experiments in conjunction with LWA, LOFAR, MWA
- Translation of technologies to radars, space-based arrays, ...
- RAPID 256, RAPID 1000, RAPID versions 2, 3, ...