

BIGHORNS status and results Marcin Sokolowski and R. Wayth, S. Tremblay, S. Tingay (Curtin University / CAASTRO)

Global Epoch of Reionisation (EoR)

BIGHORNS system with a portable biconical antenna as it was used during short deployments in 2012 - 2014

Deployment in Eyre Bird Observatory (December 2013)

BIGHORNS 2012-2014 field tests in Western Australia

MRO Wondinong
Station

Muresk EBO Perth

BIGHORNS conical log-spiral antenna (left-hand circularly polarised)

Reflection coefficients of conical log spiral vs biconical antenna

Antenna beam simulated in FEKO

BIGHORNS conical log-spiral antenna at the MRO since October 2014

- Conical log-spiral antenna (built at Curtin University)
- Switching between antenna and calibrator
- ~70 dB of gain in analogue signal path
- FPGA based spectrometer (built by CSIRO)
- Industrial PC computer for data acquisition

Analog path

Digital path

100

150

Power [arbitrary units]

Data reduction and radio frequency interference (RFI) excision

300 MHz

200

250

Data processing

- State (antenna / reference) identification
- Radio-frequency interference (RFI) exicision (total/channel power + Andre's Offringa aoflagger)
- Calibrate sky data in temperature units [Kelvin]
- Data reduction averaging of N integrations (1 hour LST bins)
- Excision of variability such as solar activity (daytime) and lightning
- Selection of consistent data sample collected in very similar conditions (ambient temperature ±3 K)

Nighttime occupancy based on data collected between 2014-10-24 and 2015-03-31

Nighttime occupancy in 10 minute bins between 2015-10-29 and 2015-11-05

Statistics of tropospheric ducting events

1.018

1.007

1.003

0.9999

0.9977

0.9946

0.9886

0.9815

0.9678

Month	Nights	Evening	Strong	Moderate	Weak
		storms	(> 10 dB)	$(> 3 \mathrm{dB})$	$(< 3 \mathrm{dB})$
2014-(10, 11)	38	7	2	3	7
2014-12	31	2	3	1	7
2015-01	31	11	2	1	3
2015-02	28	13	0	3	3
2015-03	16	5	O	0	2

Calibration compared with sky model integrated with simulated antenna pattern

Calibrated Nov 2014 dynamic spectrum in 1 hour temporal resolution

REFERENCE - MEDIAN DYNAMIC SPECTRUM OF 24 hours

Differences between 1 hour LST spectra and median spectrum calculated for data collected in Oct/Nov 2014 at LST range 0 – 1 hour

Fitting dependence expected for ionospheric absorption and thermal emission

$$\sim A(100/\nu_{MHz})^2 + B(100/\nu_{MHz})^{2+2.6}$$

Emission term

Absorption/refraction term

Correlation between fitted parameters A and B yields electron temperature at a given LST

Correlation between fitted parameters A and B yields electron temperature at a given LST

Electron temperature vs. local time

Absorption at 100 MHz measured with respect to quiet day curve (maximum curve) for every LST

Values larger than typically cited in literature, possibly because of:

- Quiet day curve (QDC) based on only 3 months of data
- Depends on time of the year, solar cycle etc.

Can mK precision be obtained by ground-based instruments?

Based on statistical test on 3 months of data, the standard deviation remains approximately constant with increasing number of sample integrations.

Therefore, the standard error of the mean should decrease as 1/sqrt(N)

Fluctuations of sky temperature averaged in 80 – 85 MHz bin

Power spectrum of the observed fluctuations

Flicker noise seems to flatten at frequencies below ~ 1 / day.
Therefore, miliKelvin precision should be possible for ground-based instruments!

Summary

- BIGHORNS system with a conical log-spiral antenna was deployed at the MRO in October 2014 and collected about 12 months of data in 50ms resolution
- We used Oct 2014 March 2015 data to study the impact of the ionosphere on the ground-based detection of the global Epoch of Reionisation
- Using BIGHORNS calibrated data we were able to measure some parameters of the ionosphere such as electron temperature and optical depth
- Ionospheric effects are ~2-3 orders of magnitude larger than the global EoR signal and particularly at nighttime are dominated by absorption and emission, whilst refraction seems to be a few times less significant
- Our analysis indicates that flicker noise characteristics of the stochastic fluctuations due to ionosphere the mK precision can be obtained by ground-based instruments after very long integrations
- The BIGHORNS system has collected a large amount of data which we used to study statistical properties of the RFI at the MRO (probability distributions of occupancy and power)

Variations and tests of different system configurations

Electron temperature

Occupancy distributions in representative channels

Distributions of RFI power in individual frequency channels

