Chasing Low Frequency Radio Bursts from Magnetically Active Stars

Christene Lynch (U. Sydney/CAASTRO)

Collaborators:

Tara Murphy (U. Sydney/CAASTRO)

David Kaplan (U. Wisconsin-Milwaukee)

Cleo Loi (Cambridge)

Martin Bell (CSIRO/CAASTRO)

- → Magnetic fields are found throughout the Hertzsprung-Russell diagram.
- → Fields thought to play important roles in evolution.

Challenging Solar Dynamo Models:

Solar dynamo depends on the interface layer between the radiate and convective zones.

> 1.5 solar masses

0.5 - 1.5 solar masses

< 0.5 solar masses

Sun.org - www.sun.org, released under CC-BY-SA 3.0

Optical & X-ray show a drop in activity past type M7:

- →Associated with decrease in plasma heating Berger et al. 2010 ApJ 70
- →Does not imply a drop in magnetic activity.

Number of Active Objects as traced in $H\alpha$:

Fraction of active dwarfs peaks in early-L dwarfs

Radio Emission Characteristics:

Wolf 424

Spangler et al. 1976, ApJ 203

Ultracool Dwarf Flare Emissi

Bright, circularly polarised, short duratic bursts strongly indicate electron cyclotron maser=emission:

Beaming + Gyrofrequency mapping leads to geometrical constraints on source region.

- 1970-80's 80 400 MHz surveys; after 1980's 1-4 GHz
- →~40% have radio flares; flare rates 0.02 - $0.8 \text{ hour}^{\wedge}(-1)$
- >M7 spectral types:
 - → Focused on 4-8 GHz
 - → ~ 7% detection rate; currently 16 known radio loud sources

Widefield, low-frequency surveys:

→ Weak fields (10-100 Gauss) emit in Murchison Widefield Array (MWA) frequency range (80-300 MHz)

MWA Transients Survey (Pl Martir Bell):

Movie courtesy of D.

Frequency: 154 MHz

Method: Drift scans at

 δ = +1.6, -26 and -55

Survey area: Entire

Southern hemisphere.

Cadence: One night

per month.

Integration time: 2

min per snapshot.

Survey length: Two years (but ongoing):

years (but orgoing);
only mage plane pulsar search (Bell et al. in prep)

- → Characterizing Ionosphere (Loi et al. 2015 MNRAS 453)
- → Limits on southern hemisphere exoplanets (Murphy

CAASTRO ARC CEL TITLE OF FXCF I LENGE

Search for 154 MHz Stellar Flares:

sources:

- •700 M0-M9.5, 100 > M9.5
- Distances <20 pc; closest source @ 2

Repsons for non-detections:

I. Sensitivity of survey Stokes I $3\sigma = 170 \text{ mJy}$ Stokes V $3\sigma = 30 \text{ mJy}$

- 2. Time coverage: average time on source ~2 hours
 - → Use rest of MWATS data for targeted searches
- 3. In-activity of sources
 - Triggered observations from Swift Burst Alerts

CAASTRO

CAASINI Rates of 154 MHz Stellar Flares:

V upper limit from closest member of our catalog: L_{154} $M_{Hz} = 1.e15$ ergs s⁻¹ Hz^{-1}

Assume probability of burst is Poisson distribution:

for n flares in $\frac{P(n|T\mu) = \frac{e^{-T\mu}(T\mu)^n}{n!}}{n!}$ ation given a flare rate of μ .

• 95% confidence I...... $\mu = \frac{-\ln(0.95)}{T \ f_{\Omega}}$

 f_{Ω} = fraction of stellar surface the flare emission is concentrated.

• Assume source region similar to that of GHz flares \Rightarrow

Decemb 1 27, 0,05 and inote Town In January 1.4 hour

- Magnetic features produce short-duration, circularly polarized coherent bursts — frequency/time structure of bursts can be used to constrain field configuration and strength.
- 3. Low frequency widefield telescopes (like MWA) can be used to build catalog of sources with known radio bursts.
- 4. Fitting the position of 800 known M dwarfs & brown dwarfs, we made no detections in the first year of the MWA Transient Survey
- 5. Non-detections may be due to sensitivity (brown dwarfs)

 December 1, time coverage (only 2 hours), or inactivity of sources.