

Netherlands Institute for Radio Astronomy

Total intensity @ 408 MHz

Polarized intensity @ 22.8 GHz

Polarized intensity @ 1.4 GHz

• at low radio frequencies, observed polarised emission has surprisingly high brightness temperature (MWA: Bernardi et al. 2013, Lenc et al. in prep; LOFAR: lacobelli et al. 2013; Jelic et al. 2014,2015)

NCP field

from -45 to +55reat//m²
brightness temperature: 4.00/m/K

ELAIS-N1

field

 $\Phi = -1.5 \text{ rad/m}^2$

 $\Phi = +0.5 \text{ rad/m}^2$

Jelic et al., 2014, A&A

• magnetic field following spiral arms of our Galaxy is almost perpendicular to the line-of-sight $\langle B_{\parallel} \rangle = 0.3 \; (0.1) \; \mu G$

magnetic field reversal(s)

W-E 0.8 deg/rad/m² N-S 0.3 deg/rad/m²

 σ $\langle B \parallel \rangle = 0.2 \mu G$

Hα map (WHAM, Haffner et al. 2003)

- the lack of emission in total intensity, an upper limit to the thermal free-free emission, T_{ff} < 0.2 K
- $T_e = 8000K$ and dl=1pc $-> n_e < 1 cm^{-3}$

 thickness in Faraday depth of 1 rad/m²

 $B_{||} > 1.2 \mu G$

 assuming equipartition between magnetic and thermal energy

 $B_{tot} < 6.5 \mu G$

- aimed to measure a proper motion of the filament
- assuming 50 pc distance and a transverse velocity of 50 km/s
 -> 0.2" per year

Ionospheric self-calibration using Galactic polarized emission

Brentjens et al., in prep.

Origin and straightness of the observed structures ?!

Are they a projection effect of complicated morphology in the magnetic field and/or in the ionized gas distribution?

Are they associated with fast-moving close-by stars interacting with the ISM?

MHD simulations of ISM:

in the presence of weak ordered magnetic fields, sub-Alfvenic anisotropic turbulence produce fibers/ filaments aligned along the magnetic field lines (e.g. Henebelle 2013, Choi & Stone 2013)

GALFA-HI and GASS Surveys magnetically aligned fibres (Clark et al. 2014)

=> edge-on seen shocks in which the field is parallel to the sheet (Heiles & Crutcher 2005)

3C196 field Planck and LOFAR

Planck map @ 343 GHz

Planck Collaboration I and XIX 2015

3C196 field Planck and LOFAR

3C196 field 3D local interstellar dust distribution

 based on colour excess data and parallax/photometric distance for 23 000 stars within 2.5 kpc from the Sun

Lallement et al., 2014, A&A and private communication

Netherlands Institute for Radio Astronomy

- rich morphology of polarized emission detected with LOFAR (115 175 MHZ),
 with the brightness temperature of a few K
- probed ISM mostly close by (<200 pc), within the Local Bubble
- discovery of many filamentary structures and linear depolarization canals (sub-Alfvenic anisotropic turbulence in the presence of magnetic field)
- the filamentary structure also shows a signature is Planck dust polarization maps, a common underlying physical structure
- surveying a larger area of the sky and observations at other frequencies
- LOFAR an excellent instrument to study ISM and constrain its physical properties, at an exquisite resolution in Faraday depth (1 rad/m²) and at angular resolution hardly affected by the beam depolarization

THANK YOU!

3C196 field WSRT 350 MHz and LOFAR

$\delta \Phi = 1 \text{ rad/m}^2$, $\Delta \Phi = 1 \text{ rad/m}^2$

