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Introduction

Interaction between magnetized plasma of Earth’s ionosphere and RF
waves causes:

* Refraction

* Scintillation

* Faraday rotation

* Absorption/attenuation

All of these get stronger/worse at lower frequencies = they are
nuisance to HF/VHF systems focused on both basic research (e.g.,
astrophysics) and applied work (e.g., radars, communications, etc.).

However, also makes monitoring of HF/VHF propagation a powerful
tool for exploring 1onospheric dynamics.

Instruments and techniques developed for low-frequency radio
astronomy have remarkable potential in this regard that has yet to be
fully realized.




X Low frequency capabilities of
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RF interferometers designed for
synthesis imaging severely
affected by dynamic ionosphere
(e.g., VLA, GMRT, LOFAR,
MWA).

Gradients in total electron
content (TEC) translate to phase
gradients within the array; to
first order, causes source
position shifts; under active
conditions, source blurred
beyond recognition.

Was major limiting factor to
angular resolution and field of
view for low-frequency arrays
until new calibration techniques
(e.g., self-cal., field-based cal.,
etc.) were developed and
implemented.

Auntenna Phase (Degrees)

Dec (deq)

-1500

1000

-1000 —

. ‘Midnight

Scintillation

wedge’

— N40 -- 8 km
— W40 -- 8 km
E40 -- 8 kin

\
Refractive wedge

At dawn \

MMM

2
=]
I

=)
I

7 1 minute
sampling |
Y ] intervals

Declination Offset (Arcseconds)

45

8 10

12 1

LAl Time (1lours)

40

35

30

25

.............

.......

| From Kassim et al.

1(2007). Above: The

effect of ionospheric
fluctuations on a

1single strong source.

Left: The impact of

differential

1 refraction over

relatively large FoV.




«¢* The advent of self-
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calibration opened the
skies to high angular
resolution imaging
below 500 MHz. But,
early on, potential for
ionospheric calibration
data for science was
recognized.

Pioneering work by
Jacobson and Erickson
in late ‘80s/early ‘90s
demonstrated
sensitivity and utility of
VLA P-band (330
MHz) system for
ionospheric work.
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Mar.-Sep. 1990; 47 P-band
sessions; mostly A-config.;
below shows azimuth
distributions for detected

waves.
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¢ Early VLA work by
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Jacobson & Erickson led
to discovery, initially
called magnetic eastward
directed (MED) waves.
Later figured out that these
were field-aligned
irregularities (FAIs) within
the lower plasmasphere.
To the VLA observing
cosmic source, these
appear as fast-moving
plane waves moving
roughly toward magnetic
east due to (nearly) co-
rotating nature of
plasmasphere.
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Building on the Past

»* Methods pioneered by Jacobson & Erickson have been expanded
upon, replacing plane-wave fits with full 3-D (2 spatial, one
temporal) spectral analysis.

¢ Can probe and characterize medium to fine scale structure.
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Building on the Past (cont.)

¢ Spectral analysis can separate out/identify plasmaspheric FAIs and
reconstruct radial structure (similar to tomography).
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Moving Forward with VLITE

¢ VLITE running ionospheric spectral analysis automatically (in near real time) on

roughly 14 hours of P-bad data per day; about 10% of that reaches ATEC precision
<0.001 TECU =» no longer relegated to handful of low frequency campaigns.
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On 12 Mar. 2015, had series
of VLITE observations of
3C84 during solar flare;
found plasmaspheric FAIs
associated with it (Helmboldt
et al. 2015).
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Imaging Tonospheric Irregularities with MWA (

s Wide field of view of MWA requires monitoring position shifts of moderately
bright sources for ionospheric corrections =2 allows for “imaging” of ionospheric

structures over large area.
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s Compact, usually dipole-

based arrays can be
powerful tool for
exploring fine scale
ionospheric structures.
Dipole-based HF/VHF
radars have been used
for decades (e.g.,
Jicamarca); potential
benefits of all-sky
sensitivity of arrays
designed for astronomy
just starting to be
realized.
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Dynamic spectrum
of Cygnus A from
the LOFAR KAIRA
station from 26 Sep.
2012 (Fallows et al.
2014); shows
significant spectral
structure of
scintillations at
northern latitudes.

Similar variations
(shown on smaller
time/frequency scales)
seen with LWA1
toward 3C252 (made
by K. Obenberger);
“banana” shape
resembles dispersed
pulse with DM = 190
pc em,



— Passive Radar

WWV at 10 MHz
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Passive Radar (cont)
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+* Narrow-band video carrier of Channel 2 in pre'midmght ‘ ptfmght
Juarez (55.25 MHz) also useful; get returns from H( —notm
airplanes (not so useful), meteor trails, and FAIs. o k .
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% All-sky tracking of FAIs associated with - - l

sporadic-E where 1on motions largely wind
driven provide new method for wind
measurements up to ~150 km altitude or higher. o0
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Summary

Low-frequency, interferometric telescopes are useful tools for
studying the fine-scale dynamics of ionosphere/plasmasphere system.

Much work has been done, but still have barely scratched the surface.

Commensal systems like VLITE real-time ionosphere pipeline
greatly increase chances of catching events like solar flares, sudden
stratospheric warmings, earthquakes, and large explosions that impact
via forcing from below and above.

In turn, a better understanding of the physics behind 1onospheric/
plasmaspheric disturbances on scales to which interferometers are
sensitive will allow for construction of better models for calibration
and imaging of low-frequency cosmic sources over wide fields of
view, and with longer baselines.




