o --,.,_ 5
e A

The OVRO LWA
Status and Future Plans

.Gre"ggHq‘:’:man,.-“cqlte'cjh}_

Jet Propulsion Laboratory \ I.m E % I

California Institute of Technology ong Wavelength Array LEDA




,,Canept

IR B IALE
=ENEVADA

\Eufeka

PtAren,

L A ount Mounts i
Hawthorne™

atod. ~ 5 HFéfO

Beeit e G
San Francise
Daly Cit

Santa Cruzy
Watsonvillgp-—+/

%

Tuldre

A full cross-correlation interferometer to e o\ o
image the entire sky continuously from OVRO ‘

y {

o LLancaster

Palmdalel.. Vit
Santd Clarita
Valle:

nta Moy

352 antennas spaced over ~2.6 km b .
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60 MHz bandwidth

~50 mJy rms noise at zenith in 30 seconds

Imaging in Stokes | and Stokes V




Collaboration

Caltech, OVRO & JPL:
Gregg Hallinan, Stephen Bourke, Michael Eastwood, Marin Anderson, Ryan
Monroe, Harish Vedantham, Sandy Weinreb, Esayas Shume, Kate Clark

David Woody, James Lamb + OVRO staff

Joe Lazio, Larry D’ Addario, Jonathon Kocz, Dave Hawkins, Attila Komjathy,
Melissa Soriano

LWA Collaboration: Greg Taylor, Joe Craig, Namir Kassim, Brian Hicks, Frank
Schinzel, Steve Ellingson et al.

LEDA Collaboration: Lincoln Greenhill, Danny Price, Ben Barsdell, Hugh
Garsden, Frank Schinzel, Greg Taylor, Dan Werthimer, Steve Ellingson et al.



All-sky monitoring to target unique science < 100 MHz

- 1) Transient science: initial focus on Stokes V imaging
- Stellar coronal mass ejections (CMEs)
- Planetary auroral radio emission
- GCRT-like events, EM-GW follow-up, serendipitous

- 2) Cosmic Dawn (redshift ~20)
- Total power measurement: modified dipoles (LEDA)
- Power spectrum measurement: interferometry with core array
- Lunar occultation: interferometry with extended array

- 3) Dynamic Imaging spectroscopy of the Sun

- 4) Continuous monitoring of the ionosphere

- 5) Reflections of Galilean moons



Extrasolar Space Weather

Is magnetic activity important for defining habitability?
Can we directly detect stellar flares, CMEs, planetary aurorae?




M Dwarfs — Implications of Activity

95% of stars that can host evolved exoplanets (age > 1 G r) are
M dwarfs N '
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longer —> flares up to 10 times more energetic

Flares — higher X-ray and ultraviolet radiation flux —>
photochemical reactions leading to significant atmospheric loss *

Coronal mass ejections (CMEs) — higher stellar wind flux —=> can
erode atmosphere — eg. ion pick-up of a CO%-rich atmosphere




The Early Solar System

5 “- &
> \
!,.l

g

Afertility u%o\ L LES SIS PR CTOREA Y. Microbial ecology and
defies the textbooks, - on developmen N wn3

t An A evolution P
SCI ] ‘ \
; e \ b:?:f:illﬂm'.s
- A AVAAAS

MAVEN at Mars

Probing a dynamic upper
atmosphere p 643




Extreme Activity: M Dwarfs and Young Solar Analogs




Remote Sensing of CMEs

- Optical:

Remote sensing of coronal mass ejections (CMEs)
is difficult

-Space-based coronographs observe Thomson
scattered sunlight

-Radio:

- The majority of fast CMEs are accompanied by GROABS20040624

Type Il bursts — often highly circularly polarized

- Allows direct measurement of density, and an
indirect measure of height in the atmosphere

Freguency (MHz)

- Mostly observed at frequencies <150 MHz

Summed light curve,,

Credit: Stephen White



Brightest Bursts from the Sun
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LARGE OUTBURST OF MAROH 8, 1047
Payne-Scott et al. Nature, 160, 256 (1947)

- Giant Type Il burst detected in 1947
->100 mlJy at 5 pc!

- Rare events

via “Under the Radar: The First Woman in Radio
Astronomy: Ruby Payne-Scott” — Miller Goss



M dwarf radio bursts

Strong evidence that M dwarfs produce very
bright radio bursts

Signatures of CMEs?

Need broadband monitoring at low
frequencies

OVRO-LWA should see these bursts in the
first 24-hour dataset.

Donati et al. Science (2006)
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Radio Emission from Solar System Planets

Jupiter detected as radio source in 1955

Late 1960s/70s: Earth’s polar region also
recognized as radio source (10 erg s1).

Voyagers: Opens up field

All gas giants and Earth have strong planetary
magnetic fields and auroral/polar cyclotron
emission

Imai Lab.

- Very high brightness temperature (> 10*° K)

- Highly circularly polarized

- Electron cyclotron maser emission

Flux density at ~4 AU (Jy)
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Why look for radio emission from exoplanets?

- The only method currently viable for
measurement of magnetic field strengths for
exoplanets.

- Allows measurement of rotation rate

- Possible use as a detection method for
exoplanets

a) Leads to constraints on scaling laws based on

magnetic fields of solar system planets

b) Provides insight into internal structure of
planet.




Radio power (W)
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Can we Detect Exoplanets?

Incident kinetic power (W)
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Searches have been ongoing for > 30 years —
no detections
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SMOOTHED DAILY AVERAGES FOR DAYS 160-365 IN 1974
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> 256 antennas
88 k_m of buried coaxial cable

Two‘~powerfu| back-ends:
1) LEDA correlator
2) All- skys Transient Monltor
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Longer baselines — 2015
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Longer baselines — 2015
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Filter or
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Conneclor

Coaxial Laser
Diode B

10-2000MHz
RF Inout B

Custom fiber links designed by Sandy Weinreb and his group
— cost per antenna now <$100 (vs $2000 for commercial hardware)




Longer baselines — 2015

- Large network of conduit holding 43 km of
optical fiber

- 6 fibers at each “station”



Longer baselines — 2015







Electronics Shelter




Electronics Shelter

Cable vault

LEDA correlator

All-Sky Transient Monitor

Analog Signal
Processing
System housing
receiver boards
(ARX)



Connecting it all together...
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Large Aperture Experiment to Detect the Dark Age (LEDA)

FX correlator with 512 inputs (Pls: Lincoln
Greenhill, Dan Werthimer, Greg Taylor, Steve
Ellingson)

The 512 signals digitized by 16 ADC boards,
each containing thirty-two 200 Ms s, 8-bit
samplers processing a 0-100 MHz baseband.

F-engine - 16 CASPER Roach-Il boards used as
polyphase filterbank to give 2048 channels
(4096 baseband)

X-engine: 22 GPU-based X-engines will cross-
correlate contiguous 2.6 MHz sub-bands, each
containing 109 channels.

GPUs achieve exceptionally high computing
density and power efficiency — 2 TF per GPU.

+ 32 ch 2000MS/s ADC




The All-Sky Transient Monitor

- 208 CPU cores, 1 TB of RAM, 288 TB of high speed storage
- Each snapshot with LWA is 2.7 GB data!

- 9 second integrations -> 27 TB/day

- How do we handle this fire hose of data?

- There are key advantages over other arrays

- Array is compact

- Array is stationary

- Data is homogeneous

- Most calibration parameters are either non-varying

(antenna beam), varying very slowly (electronic gain) or
varying sidereally (sky), aside from ionosphere!




Core First Light




Current Core Imaging Capability

- 30 second snapshot with
~40 MHz bandwidth

- Confusion limit is ~few Jy
- Thermal noise is ~ 70 mly

- Reach confusion noise in
<0.1 seconds!




Long Baselines First Light!




LOFAR MSSS: Detection of a low-frequency radio transient in
400 hrs of monitoring of the North Celestial Pole
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ABSTRACT

We present the results of a four-month campaign searching for low-frequency radio transients
near the North Celestial Pole with the Low-Frequency Array (LOFAR), as part of the Mul-
tifrequency Snapshot Sky Survey (MSSS). The data were recorded between 2011 December

and 2012 April and comprised 2149 11-minute snapshots, each covering 175 deg?. We have
found one convincing candidate astrophysical transient, with a duration of a few minutes and
a flux density at 60 MHz of 15-25 Jy. The transient does not repeat and has no obvious op-
tical or high-energy counterpart, as a result of which its nature is unclear. The detection of

. . . . ~ ¢ - T 4o R _ ) .
this event implies a transient rate at 60 MHz of .3.€;)f§47‘ x 10~* day~! deg™?2, and a transient

surface density of 1.5 x 107> deg™2, at a 7.9-Jy limiting flux density and ~ 10-minute time-
scale. The campaign data were also searched for transients at a range of other time-scales,
from 0.5 to 297 min, which allowed us to place a range of limits on transient rates at 60 MHz
as a function of observation duration.







Summary and Status

- 288-antenna Owens Valley LWA is complete

- Produces all-sky images every 9 seconds with ~10 arcminute resolution
- Remaining 64 antennas proposed via NSF ATl in 2015

-10-day survey with core array completed in July 2015

- 3-day survey with full array completed in September 2015

- Instrument paper and early science coming in early 2016!

- Continuous observations commence in January 2016
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