

ABELL 1682

An Ultra Steep Spectrum Radio Halo

Alex Clarke

ABELL 1682 An Ultra Steep Spectrum Radio Halo

Radio Halos as probes of cluster magnetic fields

LOFAR results from 44-110 MHz

Cluster Magnetic Fields

Method	Strength μ G
Synchrotron halos	0.4–1
Faraday rotation (embedded)	3–40
Faraday rotation (background)	1–10
Inverse Compton	0.2-1
Cold fronts	1–10
GZK	>0.3

Radio Halos

Ingredients:

Large scale magnetic fields + Relativistic electrons

Formation mechanisms:

- A) Relativistic electrons injected by proton-proton collisions
- B) Old electrons are accelerated Related to the merging event? Turbulence?

Ultra Steep Spectrum Radio Halos let us explore this

Abell 521 (Brunetti et al 2008 - Nature) - Spectral Index = -2.1

Steep spectrum halos are special cases that let us:

collisions

Rule out e⁻ injection via proton-proton Strongly favor particle re-acceleration via turbulence

A) Proton-proton collisions

Generating steep spectrum relativistic electrons

Expect thermal energy density to dominate over energy density of relativistic protons

This implies a limit on the spectral index of the electrons

-> we would not see steep spectrum halos via P-P collisions

Does provide possibility that clusters without radio halos have smaller magnetic fields

B) Turbulence induced by a merger event

Generating steep spectrum relativistic electrons

Turbulence injects energy into the electrons

time scales of ~1 Gyr, on spatial scales of ~ sub-cluster size

$$E_e \approx 1.4 B_{nT}^{-1/2} (v_c/300)^{1/2}$$
 $\tau \approx 0.95 \frac{B_{nT}^{1/2} (v_c/300)^{-1/2}}{(1+z)^4 + (B_{nT}/0.32)^2}$ Gyr

Spectral cut off at higher frequencies (steep spectral index) is a signature of turbulent acceleration

Low frequency observations should detect more halos

Observed spectral cut off is a measure of the cluster magnetic field

Bimodal mass distribution

LOFAR HBA

116 MHz, robust 0, contours at 5 & 10 σ 15" x 20" beam

LOFAR LBA

44 MHz, robust 0, contours at 5 & 10 σ , 20" x 30" beam

HBA-LBA Spectral Index Map

Conclusions

Radio Halos let us probe cluster magnetic fields

A1682 presents a case where low frequency observations are essential

Merger dynamics gives a cause for the halo formation mechanism

Favors the re-acceleration model for halo formation

Thanks for listening!

Alex Clarke

