

ICRAR is a partnership between Curtin University of Technology and The University of Western Australia

Search for Molecules at Low Frequency using the MWA

Chenoa Tremblay, Andrew Walsh, & Natasha Hurley-Walker

Search for Interstellar Molecules

known interstellar and circumstellar molecules (Jan 2006)

P. Thaddeus, 2006

Over 200 interstellar molecules have been detected with many of them organic and quite complex

Why Go Low?

Reason 1:Low Frequency radio allows for a decrease in line confusion

Ziurys et al. 2006

Codella et al. 2014

Why Go Low?

Reason 2: The low energy transitions of large molecules reside at low frequencies.

Methyl Formate

HC₁₃N

Why Go Low?

It is anticipated that observations at low frequencies will be best for detecting pre-biotic molecules

Molecules can help our understanding of formation of high mass stars.

Murchison Widefield Array

- » Look at the Galactic Centre at 103-133MHz
- 2 arcminute synthesised beam
- 576 sq degree field of view
- Bandwidth of 30.72MHz with 10kHz (26km/s) frequency resolution

Pilot Survey with the MWA

- » Pilot survey
 - » 4 sigma detection (2Jy/beam)
 - » within 1 channel of the rest frequency
 - » cross matched with Simbad

		-
$\mathrm{CH_{2}CO}$	$\mathrm{H_2^{13}CO}$	NO
$\mathrm{CH_{3}O^{13}CHO}$	H_2CCCH_2	$ m N^{15}O$
$\mathrm{CH_3^{18}OH}$	$\mathrm{H_2C_2S}$	^{15}NO
$l-C_3H$	$\mathrm{H_2SO_4}$	$N^{17}O$
DCOOH	$HCCCH_2OH$	$ m N^{18}O$
DNO_3	HCOOD	$^{15}{ m N}^{17}{ m O}$
$\operatorname{cis-H^{13}COO}$	HDCO	SH
$\operatorname{cis-HCOOD}$	$\mathrm{NH_{2}CH_{2}CH_{2}OH}$	$ ext{c-SiC}_3$

Galactic Centre Results

Nitric Oxide

Tremblay et al., 2015, submitted

Galactic Centre Results

3-Silanetetrayl-1,2-Propadienylidene (c-SiC₃)

Tremblay et al., 2015, submitted

Galactic Centre Results

SiO Maser Izumiura et al. 1995

c-SiC₃ Tremblay et al. submitted 2015

Both molecules at the same velocity.

Mercapto Radical

- » SH at low frequencies has analogous transitions to those of OH at 1.7GHz. Therefore, may be seen as masers
- » Total species of sulfur molecules only accounts for 1/4 of the total interstellar sulfur.
- » The relatively low SH/H₂S ratio (~0.13) suggests that reaction is fast

$$SH + H_2 \longrightarrow H_2S + H$$

Molecule	Column density (10 ¹² cm ⁻²)	Abundance relative to H ₂	Fraction of solar	
SH	4.6	6.9 x 10 ⁻⁹	0.026%	Neufeld et al. 2012
H ₂ S	35	5.2 x 10 ⁻⁸	0.20%	Gerin et al. 2012
SH+	2.6	3.9 x 10 ⁻⁹	0.015%	Godard et al. 2012
CS	12	1.8 x 10 ^{−8}	0.070%	Miyawaki et al. 1988
H ₂ O	60	9.6 x 10 ^{−8}	0.010%	Sonnentrucker et al. 2010
СН	58	9.0 x 10 ⁻⁸	0.017%	Gerin et al. 2011

Confirmation of detection?

Higher Resolution

 Use the voltage capture system (VCS) to obtain better than 10kHz resolution 100us → ~0.3 kHz

Galactic Centre SETI Search

# System	RA	Dec	RMS (mJy/beam)	Dist. (pc)	$P (10^{14} W)$
GJ 667 C	259.7451	-34.9968	416.447	6.8	< 2
$HD\ 156846$	260.1429	-19.3337	361.667	49	$< 10^{2}$
HD 164604	270.7789	-28.5606	399.954	37.98	< 70
HD 169830	276.9562	-29.8169	374.033	36.32	< 60

Tingay, Tremblay et al. Pending

Thank you.

Where do we find NO?

- It is unknown what region NO forms.
- Column densities are low compared to abundance of N and O in the ISM

Quintana-Lacaci et al., 2013

Where do we find these?

IRC+10216

Silicon Carbide molecules have been detected in the outer edges of the circumstellar envelope.

A History of Spectroscopy

This spectrometer made by W.Wilson of Tottingham, England and dates from the first half of the 20th century.