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The 21-cm Global Signal Reveals the Birth &

Characteristics of the First Stars & Galaxies
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B: ignition of first stars C: heating by first black holes D: the onset of reionization
* When did the First Stars « When did the first accreting black « When did Reionization begin?
ignite? What were these First holes turn on? What was the
Stars? characteristic mass?

« What surprises emerged from —-—— -+ uncertainties in 1st star models

the Dark Ages? -

D H R E Adapted from Pritchard & Loeb, 2010, Phys. Rev. D, 82, 023006
and Mirocha, Harker, & Burns, 2015, Ap], 813, 11. 3
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« uncertainties in 1st black hole models



Range of Model Parameters for 15 Stars & Galaxies

A
80 4030 20 15 12 10 9 8
SOFF T8 fxsl  fousl  7.=01

—

4

0T, (mK)

30 40 60 80 100 120 140 160
v (MHz)

DARK AGES RADIO EXPLORER



Observational Approaches for Detection of Global

21-cm Monopole

Single Antenna Small, Compact
Radiometers Interferometric Arrays

- EDGES (Bowman & Rogers)

Vadantham et al.
« SARAS (Patra et al.) « Mahesh et al.

«  LEDA (Greenhill, Bernardi et al.)
«  SCI-HI (Peterson, Voytek et al.)
« BIGHORNS (Sokolowski et al.)

Presley, Parsons & Liu
Subrahmanyan, Singh et al.

Challenges include cross-talk

« DARE (Burns et al.) among antenna elements, mode-
coupling of foreground continuum
sources into spectral confusion,
sensitivity.

Challenges include systematics
arising from stability issues,
accurate calibration, polarization
leakage, foregrounds.



Foregrounds: Major Challenge

Earthl’szlg1n5(':)sphere (e.g., Vedantham et al. 2014; Datta et al. 2015; Rogers et al. 2015; Sokolowski et
al.

Refraction, absorption, & emission

Spatial & temporal variations related to forcing action by solar UV & X-rays => 1/f or flicker noise acts as
another systematic or bias.

Effects scale as v2 so they get much worse quickly below ~100 MHz.
Radio Frequency Interference (RFI)
RFI particularly problematic for FM band (88-110 MHz).

Reflection off the Moon, space debris, aircraft, & ionized meteor trails are an issue everywhere on Earth
(e.g., Tingay et al. 2013; Vedantham et al. 2013).

Even in LEO (108 K) or lunar nearside (10° K), RFI brightness TB is high.
Galactic/Extragalactic
Mainly synchrotron with expected smooth spectrum (~3rd order log polynomial,

log T, :[E}yuilog (Vl())I , although it is corrupted by antenna beam; e.g., Bernardi et al. 2015).

EDGES finds spectral structure at levels <12 mK in foreground at 100-200 MHz.

Other Foregrounds - lunar thermal emission & reflections; Jupiter; Recombination lines.
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Extraterrestrial Foregrounds

1) Milky Way synchrotron
emission + “sea” of extragalactic

sources.
DARE

Diffuse foregrounds at 80 MHz
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2) Solar system objects: Sun,
Jupiter, Moon.
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i 21-cm signal
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=>Must employ advanced statistical techniques to
simultaneously fit signal, foregrounds, & instrument
parameters 7



Can we detect the strongest spectral feature in the

presence of the Galactic foreground?

Residual from 6" degree fit with ares signal model
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BﬁRE » |Instrument Requirement: Minimal Chromatic beam effects
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Signal Extraction using MCMC

End-to-end extraction results using

-60F ‘ = " EMCEE for DARE instrument parameters:
_gol | 9 1000 hr, 4 sky regions.
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This technique captures degeneracies & covariances between
parameters, including those related to signal, foregrounds,
& the instrument.

ﬁ R E For details see Harker et al. (2012), MNRAS, 419, 1070;

DARK AGES RADIO EXPLORER and Harker et al. (2015), MNRAS, in press, arXiv:151000271H. 9
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Characterizing the First Stars & Galaxies

Using an MCMC statistical framework, the
Galactic foreground is fit along with the

> — . . .
20 1 9 physical parameters of the first luminous
N 2 2—0 objects yielding these confidence intervals
E = on physical parameters. Modeling assumes

W DARE instrument sensitivity.
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Global Experiments have the potential to bound the properties (e.g., mass, spectra)
of the first generation of stars, black holes, & galaxies for the first time (0.1-0.2 dex).

BﬁHE Mirocha, Harker, & Burns (2015), Ap/, 813, 11. 10
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Science Instrument

Bicone Antennas
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Summary and Conclusions

* The Global 21-cm Monopole signal is a 50 SR i 3020 10
powerful tool to explore the first luminous '
objects in the Universe and their environs at
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* DARE science instrument: biconical dipole E " oee b hcanaify
antenna, pseudo-correlation receiver, digital i T L
spectrometer, radial ground screen. e I T T T
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 MCMC fits set meaningful constraints on: Ly-a,
ionizing, & X-ray backgrounds along with
minimum virial temperatures of halos.

 Workin Progress: Nested Sampling codes have
the potential to measure the structure in the
beam-convolved Foreground & differentiate
between different physical model of the first
galaxies.
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The 21-cm Line in Cosmology

> =13 z =10
v =1.4 GHz v = 100 MHz

CMB acts as Neutral gas Redshifted signal
back light imprints signal detected

baryon peculiar
density velocities
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Radiative transitions (CMB)
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Wouthysen-Field effect Courtesy of J. Pritchard




Parameterizing the 21-cm Model

* Previous studies
parameterized signal from
just the 3 Turning Points.

* A more physically-motivated
approach to model the Ly-a,
IGM thermal, & ionization

T history is a tanh model:
A |
A(z) ref{1+tanh[( 20 —2)/A7]}

. Slgnlﬁcantly improves

0.00F

ool 1 ‘%ﬁiifﬁée;i?;fﬁt | extraction of 21-cm signal
* .- %ffse'gr 1}‘)P fit from Foregrounds, reducing
........ ok it biases.
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