

Jack Burns for the DARE Team

Center for Astrophysics & Space Astronomy University of Colorado Boulder

Science at Low Frequencies
Albuquerque, NM
2 December 2015

DARE Project Team

Principal Investigator: Jack Burns, University of Colorado Boulder

Deputy Principal Investigator: Joseph Lazio, JPL/Caltech

Project Manager: Butler Hine, NASA Ames

Deputy Project Manager: Jill Bauman, NASA Ames Spacecraft Project Management: Ball Aerospace Instrument Project Management: JPL/Caltech

Science Co-Investigators:

Judd Bowman, Arizona State University

Richard Bradley, National Radio Astronomy Observatory

Abhirup Datta, University of Colorado Boulder

Steven Furlanetto, UCLA

Dayton Jones, JPL/Caltech

Justin Kasper, University of Michigan

Abraham Loeb, Harvard University

Jordan Mirocha, U. Colorado & UCLA

Collaborators:

Michael Bicay, NASA Ames Geraint Harker, University College London Jonathan Pritchard, Imperial College Michael Seiffert, JPL

Graduate Students:

Bang Nhan, University of Colorado Keith Tauscher, University of Colorado

The 21-cm Global Signal Reveals the Birth & Characteristics of the First Stars & Galaxies

B: ignition of first stars

- When did the First Stars ignite? What were these First Stars?
- What surprises emerged from the Dark Ages?

C: heating by first black holes

 When did the first accreting black holes turn on? What was the characteristic mass?

D: the onset of reionization

· When did Reionization begin?

--- uncertainties in 1st star models

--- uncertainties in 1st black hole models

Range of Model Parameters for 1st Stars & Galaxies

Observational Approaches for Detection of Global 21-cm Monopole

Single Antenna Radiometers

- EDGES (Bowman & Rogers)
- SARAS (Patra et al.)
- LEDA (Greenhill, Bernardi et al.)
- SCI-HI (Peterson, Voytek et al.)
- BIGHORNS (Sokolowski et al.)
- DARE (Burns et al.)

Challenges include systematics arising from stability issues, accurate calibration, polarization leakage, foregrounds.

Small, Compact Interferometric Arrays

- Vadantham et al.
- Mahesh et al.
- Presley, Parsons & Liu
- Subrahmanyan, Singh et al.

Challenges include cross-talk among antenna elements, mode-coupling of foreground continuum sources into spectral confusion, sensitivity.

Foregrounds: Major Challenge

Earth's lonosphere (e.g., Vedantham et al. 2014; Datta et al. 2015; Rogers et al. 2015; Sokolowski et al. 2015)

Refraction, absorption, & emission

Spatial & temporal variations related to forcing action by solar UV & X-rays => 1/f or flicker noise acts as another systematic or bias.

Effects scale as v⁻² so they get much worse quickly below ~100 MHz.

Radio Frequency Interference (RFI)

RFI particularly problematic for FM band (88-110 MHz).

Reflection off the Moon, space debris, aircraft, & ionized meteor trails are an issue everywhere on Earth (e.g., Tingay et al. 2013; Vedantham et al. 2013).

Even in LEO (108 K) or lunar nearside (106 K), RFI brightness TB is high.

Galactic/Extragalactic

Mainly synchrotron with expected smooth spectrum (~3rd order log polynomial,

$$\log T_{\mathrm{fg}} = \sum_{i=0}^{N_{\mathrm{poly}}} a_i \log \left(\frac{\mathrm{v}}{\mathrm{v_0}}\right)^i$$
, although it is corrupted by antenna beam; e.g., Bernardi et al. 2015).

EDGES finds spectral structure at levels <12 mK in foreground at 100-200 MHz.

Other Foregrounds - lunar thermal emission & reflections; Jupiter; Recombination lines.

Extraterrestrial Foregrounds

parameters

1) Milky Way synchrotron emission + "sea" of extragalactic sources.

2) Solar system objects: Sun, Jupiter, Moon.

Spectra of Foregrounds

simultaneously fit signal, foregrounds, & instrument

Can we detect the strongest spectral feature in the presence of the Galactic foreground?

Instrument Requirement: Minimal Chromatic beam effects

Signal Extraction using MCMC

For details see Harker et al. (2012), MNRAS, 419, 1070; and Harker et al. (2015), MNRAS, in press, arXiv:151000271H.

& the instrument.

Characterizing the First Stars & Galaxies

Global Experiments have the potential to bound the properties (e.g., mass, spectra) of the first generation of stars, black holes, & galaxies for the first time (0.1-0.2 dex).

Science Instrument

Antenna: Dual, deployable bicones to accommodate launch volume

- Mast deploys bicones above S/C deck
- Bicones deploy to achieve length
- Jib Radials deploy to form ground plane

Receiver: Pseudo-correlation Architecture + Reflectometer

- Heritage from WMAP, Planck, Microwave Limb Sounder on UARS.
- Thermally controlled front-end receiver electronics enclosure

Spectrometer

- Achieves 10⁶ dynamic range
- Uses space-qualified FPGAs.

Summary and Conclusions

- The Global 21-cm Monopole signal is a powerful tool to explore the first luminous objects in the Universe and their environs at z>10.
- DARE science instrument: biconical dipole antenna, pseudo-correlation receiver, digital spectrometer, radial ground screen.
- *MCMC fits set meaningful constraints on:* Ly- α , ionizing, & X-ray backgrounds along with minimum virial temperatures of halos.
- Work in Progress: Nested Sampling codes have the potential to measure the structure in the beam-convolved Foreground & differentiate between different physical model of the first galaxies.

Supplemental Slides

The 21-cm Line in Cosmology

spin temperature set by different mechanisms:

Radiative transitions (CMB) Collisions Wouthysen-Field effect

Courtesy of J. Pritchard

Parameterizing the 21-cm Model

- Previous studies
 parameterized signal from
 just the 3 Turning Points.
- A more physically-motivated approach to model the Ly-α, IGM thermal, & ionization history is a *tanh* model:

$$A(z) = \frac{A_{\text{ref}}}{2} \{ 1 + \tanh[(z_0 - z)/\Delta z] \}$$

 Significantly improves extraction of 21-cm signal from Foregrounds, reducing biases.